
Eur. Phys. J. B 26, 191–198 (2002)
DOI: 10.1140/epjb/e20020080 THE EUROPEAN

PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. A new derivation is presented of Walker’s exact solution to Gilbert equation, a solution which
mimicks the travelling-wave motion of a flat domain wall at 180◦. It is shown that a process during which
the working of the applied magnetic field exactly compensates dissipation (the Walker condition) exists
both under the constitutive circumstances considered in the standard Gilbert equation and when either the
internal free-energy or the dissipation, or both, are generalized by the introduction of higher-gradient terms;
but that such a process cannot solve the generalized Gilbert equation. It is also shown that, when dry-
friction dissipation is considered and a suitable magnetic field is applied, the associated Gilbert equation
has a Walker-type solution mimicking a flat wall, at 90◦ this time, which however does not satisfy the
Walker condition.

PACS. 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion,
dynamic scaling, etc.) – 75.60.Ch Domain walls and domain structure

1 Introduction

Consider an infinite ferromagnetic body partitioned into
two domains by a flat wall parallel to the easy axis e,
and suppose that the wall be a 180◦−wall, i.e., that the
magnetization field m, while having constant direction in
each domain, rotate from e to − e across the wall thick-
ness ∆ (Fig. 1). It was Landau and Lifshitz [1], in 1935,
who first put together a variational mathematical model
for the statics of this idealized physical situation, and gave
an explicit analytical solution for the spatial dependence
of the magnetization inside the wall, in the absence of
an applied magnetic field. Their solution pictures a Bloch
wall, in that the magnetization rotates in a plane paral-
lel to the wall; and it effectively concentrates the rotation
about x = 0 (Fig. 3), allowing for an estimate of ∆, al-
though it actually spreads the rotation over the whole axis
perpendicular to the wall. In the same path-breaking pa-
per [1], Landau and Lifshitz also considered the case when
an external magnetic field parallel to the easy axis sets the
wall in motion; they derived an approximate solution of
the traveling-wave form

m = m(ξ) , ξ := x− vt, (1)

with which they were able to estimate the dynamical mag-
netic permeability of a ferromagnet. Some three decades
later, in his doctoral thesis, Walker [2,3] furnished an
exact solution of the form (1) to the classical (Landau-
Lifshitz and) Gilbert [4] evolution equation for the mag-
netization as adapted to the flat-wall case. Walker’s solu-
tion, being explicit, permits us to dispose of the somewhat
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casual asymptotics used by Landau and Lifshitz to jus-
tify their approximations. Remarkably, constants apart,
Walker’s dynamic solution depends on the current vari-
able ξ just as Landau-Lifshitz’ static solution depends
on the spatial coordinate x (Sect. 4); moreover, during
a Walker’s evolution, as noted in passing on page 275 of
[3], dissipation is exactly compensated by external work-
ing. This fact draws attention to the class of the Walker
processes, that is to say, those evolution processes of the
magnetization field during which such a compensation
condition is fulfilled. One may then ask whether, for ferro-
magnets whose constitutive response is more general than
the standard response, it would still be true that, granted
the compensation condition, the traveling-wave solutions
to the dynamic problem have the same form as the vari-
ational solutions to the associated static problem. One
may also ask whether there are other Walker processes –
in addition to the steady propagation motions of type (1)
discussed below – that solve the standard Gilbert equa-
tion, or generalizations of it. It was to answer questions of
this type that we undertook the work whose first results
we here present.

Our paper begins by a quick description of the
mathematical model leading to a generalized version of
the Gilbert equation (see Sect. 2; details are found in
[5]). We derive a scalar consequence of this equation,
the Liapounov relation establishing that the dissipa-
tion and the time rate of a body’s total energy, in-
ternal plus external, must sum to null in every possi-
ble process; in particular, it follows from the Liapounov
relation that the body’s internal energy is conserved
during a Walker process. Next, after in Section 3 we
collect some preparation results, we introduce our pro-
cedure to derive the Walker solution to the classical
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Gilbert equation (Sect. 4). By applying this procedure, we
show in Section 5 that, when the Gilbert equation is gener-
alized by the addition of terms due to either higher-order
exchange energy or exchange dissipation (or both) [5–10],
the Walker processes retain their form but do not solve
the generalized Gilbert equation. In our final section we
apply our procedure again in the case when a dry-friction
dissipation term is added to the standard Gilbert equa-
tion [11,5]. We show that, if the applied magnetic field
has suitable, nonvanishing components in the directions
orthogonal to the easy axis, then there are exact solutions
of the Gilbert equation picturing 90◦−walls; these solu-
tions, however, are not Walker processes.

2 The Gilbert equation

In a saturated, undeformable ferromagnet occupying the
region Ω, the evolution of the magnetization vector is
ruled by the following equation:

γ−1ṁ = m× (h + d) , (2)

where the constant γ < 0 is the gyromagnetic ratio, m the
magnetization (a unit vector, at saturation), h the mag-
netic field, and d the dissipation field1. This equation is a
formal generalization of the classical model equation due
to Landau and Lifshitz and Gilbert, a generalization that
can be given a precise physical status [5,7,8]; provided
ṁ 6= 0, it can be written as the following system of two
scalar equations:

− γ−1ṁ · ṁ = (h + d) ·m× ṁ ,
0 = (h + d) · ṁ .

(3)

The magnetic field h is the variational derivative of the
free-energy functional Ψ{m}, while the dissipation field d
is the variational derivative of the dissipation potential
X{ṁ}:

h = − δmΨ , Ψ{m} =
∫
Ω

ψ(m,∇m,∇∇m) , (4)

d = − δṁX , X{ṁ} =
∫
Ω

χ(ṁ,∇ṁ) . (5)

1 The notation we here use is only reminiscent of the notation
commonly used in the literature on the physics of magnetized
matter; in the Appendix we discuss it in the light of the latter,
and pay due attention to the relevant dimensional issues.

Thermodynamic compatibility is guaranteed if the dissi-
pation density is non-negative:

d := ∂ṁχ · ṁ + ∂∇ṁχ · ∇ṁ ≥ 0 . (6)

Provided that the appropriate homogeneous Neumann
conditions prevail at the boundary of Ω, it follows from
(3)2, (4), and (5), that

Ψ̇ +
∫
Ω

d = 0 , (7)

a relation that embodies the Liapounov structure intrinsic
to the Gilbert equation, a structure that all of its general-
izations must of course retain. We split the magnetic field
and the free energy as follows:

h = hext + hint, (8)
ψ = ψext + ψint, ψext = −hext ·m, (9)

Ψ = Ψext + Ψint, Ψext{m} = −
∫
Ω

hext ·m . (10)

We regard hext as a control field, at our disposal to gen-
erate one or another space-time evolution for the mag-
netic field in a given region Ω. As anticipated in the
Introduction, we are especially interested in finding cir-
cumstances when the external working balances the dissi-
pation pointwise:

−hext · ṁ + d = 0 .2 (11)

Under such circumstances,

Ψ̇ext +
∫
Ω

d = 0 , (12)

and hence, due to the Liapounov relation (7), the internal
free-energy is globally conserved :

Ψ̇int = 0 . (13)

More precisely, we are interested in finding solutions, if
any, of the generalized Gilbert equation (2) by looking into
the set of the Walker processes, i.e., the solutions of the
scalar equation (11); we refer to the latter as the Walker
condition. We shall first consider the classical choices of
ψint and χ to which both Landau and Lifshitz and Gilbert
confined themselves, then some of the more general choices
that have been recently suggested.

3 Preliminaries to the Walker solution

3.1 Standard dissipation and free energy

As to the density of the dissipation potential, the standard
choice is

χ =
1
2
µ |ṁ|2 , µ > 0 , (14)

2 Trivially, this compensation condition implies that, if the
external working is null, so is dissipation; but then, as it is
not difficult to deduce from (6), thermodynamics only allows
for static processes. As a matter of fact, the Landau-Lifshitz
solution is a static Walker process.
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the so-called relativistic dissipation. According to (5), the
relativistic dissipation field has the form

d = −µ ṁ , (15)

and hence, by the definition in (6),

d · ṁ + d = 0 . (16)

As to the internal free energy, the standard choice is

ψint = ψe + ψa + ψs , (17)

where ψe, ψa, and ψs are the exchange, anisotropy, and
stray energies; the corresponding splitting of the internal
magnetic field is

hint = hext + ha + hs . (18)

Specifically, the exchange energy is

ψe =
1
2
α |∇m|2 , α > 0 , (19)

with

he = α4m . (20)

The anisotropy energy is

ψa = − 1
2
β (m · e)2 , (21)

where the unit vector e gives the direction of the easy
axis (β > 0) or the orientation of the easy plane (β < 0).
Accordingly,

ha = β (m · e)e . (22)

Finally, the stray magnetic field is classically taken to be
the unique square-integrable solution hs(m) of the quasi-
static Maxwell equations

rot hs = 0 ,
div hs = −div m ,

(23)

in the whole space. The related energy density (also called
the demagnetization energy) is

ψs = − 1
2

hs(m) ·m . (24)

In the next subsection we make the dependence of the
stray field hs on the magnetization m explicit, for the
one-dimensional problem we here address.

3.2 Stray-field energy in a flat wall

Let c1, c2, c3 an orthonormal Cartesian frame with c1 per-
pendicular to the wall and c3 = e. In the case of a flat wall,
the magnetization vector depends (beside possibly for the

time t, which is kept fixed in our present discussion) on
the one spatial coordinate x ≡ x1:

m = m(x, t) . (25)

As shown in the Appendix, the associated stray field must
be parallel to c1, and have the form:

hs = −((m · c1) + c)c1 , (26)

where c is spatially constant. If we take c = 0,3 the stray-
field energy (24) takes the form:

ψs =
1
2

(m · c1)2 . (27)

3.3 Standard dissipation balance and Gilbert equation

With (26), relations (17) and (18) for the density of inter-
nal energy can be given the following explicit forms:

ψint =
1
2
α |∇m|2 +

1
2

Tm ·m , (28)

with

T := −β e⊗ e + c1 ⊗ c1 , (29)

where use has been made also of (20) and (22). Substitu-
tion of (20, 22) and (26) into (18) gives:

hint = α4m + β(e ·m)e− (c1 ·m)c1 , (30)

or rather, with the use of (29),

hint = α4m−Tm . (31)

In addition, for the external magnetic field driving the
wall motion we choose

hext = h e , h = const. (32)

In conclusion, the Walker equation (11) becomes

(−h e + µ ṁ) · ṁ = 0 .4 (33)

Moreover, the generalized Gilbert equation (2) reduces to
the standard form

γ−1ṁ = m× (hint + h e− µ ṁ) ; (34)

the equivalent scalar system (3) is

− γ−1ṁ · ṁ = (hint + h e) ·m× ṁ ,
0 = (hint + h e− µ ṁ) · ṁ .

(35)

Thus, for a Walker process (a solution of (33)) to be a
Gilbert process (a solution of (34)), it has to satisfy

− γ−1ṁ · ṁ = (α4m−Tm + h e) ·m× ṁ ,
0 = (α4m−Tm) · ṁ .

(36)

In the next section we show that one such solution exists.
3 Whenever c 6= 0, the physical effect of the part −c c1 of

the stray field can be cancelled by the addition of a suitable
external field.

4 An interesting consequence of (33) is that

h(m · e)̇ ≥ 0

along all Walker processes.
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Fig. 2.

4 The Walker solution

4.1 Wall geometry

Let e, ϕ and ϑ be, respectively, the polar axis and the par-
allel and meridional coordinates in a system of spherical
coordinates. Moreover, let

a = a(ϕ) = − sinϕ c1 + cosϕ c2 (37)

be the unit vector orthogonal to both e and m =
m(ϕ, ϑ, t) and such that a · e × m > 0 (Fig. 2). Then,
with the use of the orthonormal basis (a, e,Ae), where
A = A(ϕ) is the skew tensor uniquely associated to a:

Ae = a× e = cosϕ c1 + sinϕ c2 , (38)

we have that

m = cosϑ e + sinϑAe , (39)

ṁ = sinϑ ϕ̇ a + ϑ̇Am , (40)

where

Am = a×m = − sin θ e + cos θAe ; (41)

hence,

m× ṁ = ϑ̇a− sinϑ ϕ̇Am , (42)

so that, in particular,

e ·m× ṁ = sin2 ϑ ϕ̇ . (43)

4.2 Satisfying the Walker condition

With (40), the Walker equation (33) becomes:

h sinϑ ϑ̇+ µ (sin2 ϑ ϕ̇2 + ϑ̇2) = 0 . (44)

We here restrict attention to traveling-wave solutions
to (44) being of type (1) and such that

ϕ(ξ) = ϕo = const., (45)

Fig. 3.

so that, in particular,

ϑ̇ = − v ϑ′ .5 (46)

Under the provisional assumptions that both the
propagation velocity v and ϑ′ be not null and that the
signs of v and the datum h be the same, we write equation
(44) in the simple form

ϑ′(ξ) = c sinϑ(ξ), ξ ∈ (−∞,+∞), c =
h

µv
· (47)

Equation (47) is directly reminiscent of the equation
derived by Landau and Lifshitz in their classical paper:

ϑ′
2 =

β

α
sin2 ϑ , (48)

that is, equation (8) of [1]. The solution of (47) can be
read off equation (9) of [1], and is

ϑ(ξ) = arccos
1− exp(2 c ξ)
1 + exp(2 c ξ)

(49)

(see Fig. 3).

Remark. For a flat domain wall parallel to the easy axis e
and perpendicular to c1, centered at ξ = 0, and of thick-
ness 2ξ0, we expect the conditions

m(∓ξ0) = ± e . (50)

to be satisfied at the boundary. However, Dirichlet-type
conditions such as (50) do not seem physically realizable
in micromagnetics: instead, Neumann conditions, such as

∂c1m(∓ξ0) = 0 , (51)

have a physical sense that is not questioned6. Walker’s
solution effectively concentrates about ξ = 0 most of
the rotation of m from e to − e, although it spreads
that rotation over the whole real line. Moreover, for any

5 Here and henceforth a superscript prime denotes differen-
tiation with respect to ξ.

6 In the present case, the boundary normal is n = ± c1 for
ξ = ± ξ0; ∂c1m = (∇m)c1.



P. Podio-Guidugli and G. Tomassetti: On the steady motions of a flat domain wall in a ferromagnet 195

traveling-wave process of the type we are considering,
∇m = m′ ⊗ c1, m′ = ϑ′Am . (52)

Thus, the boundary condition (51) takes for Walker’s
solution the limit form

ϑ′(±∞) = 0 , (53)

or rather, with the use of (47)1,
sinϑ(±∞) = 0 ; (54)

this last condition, with (39), yields
m(ϑ(∓∞)) = ± e , (55)

in agreement with (50). ♦

4.3 Solving the Gilbert equation

Consider now the vectorial equation (34) and, with
(40–43), replace it by the following system of two scalar
evolution equations:

−γ−1 ϑ̇ = (hint + d) · a ,
γ−1 sinϑ ϕ̇ = (hint + d) ·Am− h sinϑ ,

(56)

where of course hint and d are given by (31) and (15),
respectively. This system is equivalent to system (35) and,
as we proceed to show, more convenient to arrive to a quick
and complete derivation of the traveling-wave solutions to
equation (34); the derivations one finds in the literature
move instead from (35).

For a steadily propagating magnetization process
consistent with (45), that is to say, for m(ϑ(x− vt)), we
have that

ṁ = −vm′, 4m = m′′ , m′′ = ϑ′′Am− ϑ′2 m ,
(57)

so that
d · a = 0 , d ·Am = µv ϑ′ ; (58)

moreover,

Tm · a = − sinϕo cosϕo sinϑ ,
Tm · Am = (β + cos2 ϕo) sinϑ cosϑ . (59)

Thus, the system (56) reduces to

v ϑ′ = γ sinϕo cosϕo sinϑ , (60)
0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ µv ϑ′ − h sinϑ .

For the Walker solution (49) of equation (47) to be a
solution of this system as well, the second equation must
further reduce to

αϑ′′ = (β + cos2 ϕo) sinϑ cosϑ .7 (61)

In addition, the so-far indeterminate constants v and
ϕo must satisfy the two consistency conditions with the
datum h resulting from substitution of (49) and its deriva-

7 Note that the system (36) reduces precisely to the system
of this equation and the first of (60).

tive into, respectively, (60)1 and (61). These conditions
are:

h = µγ sinϕo cosϕo , (62)

and (
h

µv

)2

=
β + cos2 ϕo

α
· (63)

Just as the Walker condition (47), the first equation of
the Gilbert system (60) requires that ϑ′ and sinϑ be pro-
portional; for it to be consistent with the second, both (62)
and (63) must hold. There is no need to determine the ac-
tual shape (49) of the Walker solution to deduce directly
from (62)-(63) that, for whatever external field satisfying

h <
1
2
µγ , (64)

the steady propagation of a plane magnetization wave
m(ϑ(x − vt)) is possible, with one or another of the two
velocities:

v =
h

µ

√
α

β + cos2 ϕo
, (65)

cos2 ϕo =
1
2

(
1±

√
1−

(2h
µγ

)2 )
. (66)

Combination of the first of these relations with the last
of (47) yields for the constant c the value ∆−1, with

∆ :=
√

α

β + cos2 ϕo
; (67)

we can take ∆, the material parameter that would drive a
conceivable sharp-interface asymptotics, as a measure of
the wall thickness.

Remark. For h, and hence v, equal to zero, (66) gives
ϕo = π/2: the wall is a Bloch wall (no stray field), of thick-
ness ∆ = (α/β)1/2, as Landau and Lifshitz [1] found by
solving the extremum problem∫ +∞

−∞
(
1
2
αϑ′

2 − 1
2
β cos2 ϑ) dx = min. , (68)

whose Euler-Lagrange equation is

αϑ′′ − β sinϑ cosϑ = 0 (69)

(cf. (61)). ♦

5 High-order exchange energy and exchange
dissipation

We now investigate whether the method we propose to
generate the Walker solution continues to work for ferro-
magnets of more general constitutive response than the
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standard response. We take the expressions for the inter-
nal energy density and for the dissipation potential to be

ψint =
1
2
α |∇m|2 +

1
2

Tm ·m +
1
2
λ |4m|2 , λ > 0 ,

(70)

and

χ =
1
2
µ |ṁ|2 +

1
2
τ |∇ṁ|2 , τ > 0 (71)

(cf., respectively, (28) and (14)). Then, the Walker
equation becomes

(−h e + µ ṁ) · ṁ + τ ∇ṁ · ∇ṁ = 0 . (72)

Moreover, the internal magnetic field and the dissipation
field become

hint = α4m−Tm− λ44m (73)

and

d = −µ ṁ + τ 4ṁ , 8 (74)

so that the corresponding generalized Gilbert equation
is

γ−1ṁ = m× (α4m −Tm − λ44m
+h e − µ ṁ + τ4ṁ) . (75)

Remark. The scalar system equivalent to (75) can still
be written in the form (56), of course with hint and d now
given by (73) and (74). The mathematical effects of the
high-order exchange terms in (75) have been studied in [8]
and [9] (see also [5,6] and [10]). From the physical point
of view, the relative importance of the these terms is mea-
sured by two additional material parameters, both having
the dimensions of a length: these are ∆e := (λ/α)1/2 and
∆d := (τ/µ)1/2. ♦

Under the present circumstances, it is convenient to
supplement (52) and (57) with the additional relations

∇ṁ = − vm′′ ⊗ c1 , 4ṁ = − vm′′′, 44m = m′′′′ ,

m′′′ = (ϑ′′′ − ϑ′3) Am− 3ϑ′ϑ′′m , (76)

m′′′′ = (ϑ′′′′ − 6ϑ′2ϑ′′)Am− (4ϑ′ϑ′′′ − ϑ′4 + 3ϑ′′2)m .

With the help of these formulae, equation (72) can be
written in the following form, when restricted to processes
of the type m(ϑ(x− vt)):

−h sinϑϑ′ + µv ϑ′
2 + τv (ϑ′′2 + ϑ′

4) = 0 . (77)

It is not difficult to check that this equation admits so-
lutions of the form (47). In fact, the admissible value of

8 Note that, in the place of relation (16), we now have

d · ṁ + d = τ (4ṁ +∇ṁ · ∇ṁ) = τ div ((∇ṁ)T ṁ) .

the constant C := c2 is the only real and positive solution
C0 = C0(µ, τ, v, h) of the following algebraic system:

τ

µ
C3 + C − h

µv
= 0. (78)

(note that (63) is recovered from (78) for τ equal to zero).
It remains for us to check whether the solution we found
for (77) also solves the generalized Gilbert equation (75).
It is easy to predict a negative outcome. In fact, with
the generalized energy density (70), the Landau-Lifshitz
functional (68) becomes∫ +∞

−∞
(
1
2
αϑ′

2 − 1
2
β cos2 ϑ+

1
2
λϑ′′

2) dx = min. , (79)

and the associated Euler-Lagrange equation,
αϑ′′ − β sinϑ cosϑ− λϑ′′′′ = 0 , (80)

has no solution of type (49). However, to perform a
thorough, conclusive check, we observe that, when m =
m(ϑ(x− vt)), the generalized Gilbert equation reads

−vγ−1m′ = m× (αm′′ −Tm − λm′′′′

+h e + µvm′ − τvm′′′) , (81)

and is equivalent to a system consisting of the first
equation of (60) (because both higher-order terms have a
null orthogonal projection in the direction of a) and the
following modification of the second

0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ µv ϑ′ − h sinϑ

−λ(ϑ′′′′ − 6ϑ′2ϑ′′)− τv(ϑ′′′ − ϑ′3) . (82)

For these equations to be compatible, once again there
must be such a constant C that

ϑ′ = C sinϑ , (83)

with
v C = γ sinϕo cosϕo , (84)

and with the following algebraic condition satisfied what-
ever the angle ϑ in (0, π):

0 = (αC2 − (β + cos2 ϕo)) cosϑ+ µv C − hext

−λC4(12 cos2 ϑ− 11) cosϑ− τv C3(3 cos2 ϑ− 2), (85)

However, this last requirement is impossible to satisfy
exactly, unless of course both λ and τ are equal to zero9.

9 Relation (83) has the following differential consequences:

ϑ′′ = C2 sinϑ cosϑ,
ϑ′′′ = C3(cos2 ϑ− sin2 ϑ) sinϑ,
ϑ′′′′ = C4(cos2 ϑ− 5 sin2 ϑ) sinϑ cosϑ,

(86)

whence

ϑ′′′′ − 6ϑ′
2
ϑ′′ = C4(cos2 ϑ− 11 sin2 ϑ) sinϑ cosϑ

ϑ′′′ − ϑ′3 = C3(cos2 ϑ− 2 sin2 ϑ) sinϑ .
(87)

Condition (85) obtains when we substitute (87) into (82).
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6 Dry-friction dissipation

We now propose a generalization of Walker’s solution to
the case when a dry-friction term is included in the dissi-
pation vector10. Precisely, we take the dissipation poten-
tial to be

χ =
1
2
µ |ṁ|2 + η |ṁ| , (88)

with µ and η positive constants, so that the dissipation
vector d becomes

d = −µ ṁ + η f(ṁ) (89)

where

− f(ṁ) = |ṁ|−1ṁ for ṁ 6= 0 ,
− f(0) ∈ {v | |v| ≤ 1} , (90)

is the dry-friction mapping. Next, we replace the prescrip-
tion (32) for the applied magnetic field by the following
more general prescription:

hext = h e + haa + hAeAe, (91)

where all three components of hext, not only h, are control
parameters we can assign the constant values we wish.
With (89–91), the Walker condition (11) takes the form

−ha sinϑ ϕ̇+ (h sin θ − hAe cos θ)ϑ̇
+µ(sin2 ϑ ϕ̇2 + ϑ̇2) + η |(sin2 ϑ ϕ̇2 + ϑ̇2)1/2| = 0 ,

(92)

and the simpler form

−h sin θ + hAe cos θ + µv ϑ′ + η sign (vϑ′) = 0 (93)

for processes of the type m(ϑ(x−vt)). Likewise, with (91)
we can write the Gilbert system as

−γ−1 ϑ̇ = (hint + d) · a + ha ,

γ−1 sinϑ ϕ̇ = (hint + d) ·Am− h sinϑ+ hAe cosϑ ;
(94)

with (89) and (90) and for processes of the type m(ϑ(x−
vt)), this system becomes

v ϑ′ = γ sinϕo cosϕo sinϑ− γha ,
0 = αϑ′′ − (β + cos2 ϕo) sinϑ cosϑ+ µv ϑ′ − h sinϑ

+ hAe cosϑ+ η sign (vϑ′) . (95)

As a glance to (93) and the first of (95) makes evident,
no solution of the former equation can also solve the lat-
ter, unless perhaps hAe = 0. Now, mutual consistency of
the equations (95) is guaranteed provided that the con-
stants h, v and ϕo satisfy the conditions (62–63) and that,
in addition, the remaining components of the control field
be such that

ha =
η

µγ
sign (vϑ′) , hAe =

αη

(µv)2
h sign (vϑ′) . (96)

10 This term should accommodate possible “slip-stick” mo-
tions of domain walls, whence the name.

Thus, for hAe to be null, h should be null as well, a cir-
cumstance when, as is easily seen, the system (95) has
no solution for η 6= 0. We must then conclude that, in
the presence of dry friction, no Walker process solves the
Gilbert equation. This notwithstanding, an explicit solu-
tion to the Gilbert equation can be found. Assuming that
all consistency conditions hold, we can write (95)1 in the
form

ϑ′(ξ) =
1
∆

(sinϑ(ξ) + r) , r = − η

|h| signϑ′ , (97)

with ∆ given by (67).
An easy continuity argument shows that the sign of ϑ′

must be constant for class-C1 solutions of (97)11. Hence,
we treat r in (97) as a constant parameter. Granted this,
solutions of (97) exist only for |r| < 1, and have the form

ϑ(ξ) = −sign (r) arccos
1− f2(ξ)
1 + f2(ξ)

, (98)

(cf. (49)), where

f(ξ) =
f2 F exp (ξ/∆r)− f1

F exp (x/∆r)− 1
, (99)

f1 =
−1 +

√
1− r2

r
, f2 =

−1−
√

1− r2

r
, (100)

F =
1− |r| −

√
1− r2

1− |r| +
√

1− r2
; (101)

moreover,

∆r =
1√

1− r2
∆ (102)

is the thickness of the transition layer when dry-friction is
accounted for.

Note that, for r small, f1 ≈ −r/2, f2 ≈ −2/r and
F ≈ r/2; therefore, when the dry-friction coefficient η
is small, f(ξ) ≈ − exp(ξ/∆) and Walker’s solution is re-
covered. Note also that the wall thickness becomes larger
when the dry-friction coefficient increases (Fig. 4). Finally,
as to the limit values of the magnetization, one finds that

lim
ξ→±∞

m(ξ) = ±
√

1− r2 e + r e× a . (103)
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11 Interestingly, it also follows from (97) that, for class-C0

solutions, the jump in ϑ′ must equal 2 |r|.
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Fig. 4.

Appendix

1. Notation and units

In SI units, the Gilbert equation reads

γ−1
e ṁ = µ0m×Heff , (104)

where γe = g qe/me is the gyromagnetic ratio, qe < 0 is the
signed electron charge, me is the electron mass and g > 0
is the Landé factor ; µ0 denotes the magnetic permeability
of the vacuum, and

Heff = −(µ0Ms)−1δmΓ , (105)

is the effective field, with Ms the saturation magnetization
and Γ the Gibbs free energy. The standard free energy is
written as

Γ =
∫
Ω

A|∇m|2 −K(e ·m)2 − µ0Ms

(
1
2

Hs + Hext

)
·m ,

(106)

where Hs and Hext are, respectively, the stray field and
the external magnetic field, A is the exchange constant
and K is the anisotropy constant.

Our notation is recovered upon defining the dimen-
sionless quantities

ψ = (µ0M
2
s )−1g ,

β = 2(µ0M
2
s )−1K ,

h = M−1
s Heff ,

hs = M−1
s Hs ,

hext = M−1
s Hext ,

(107)

and

α = 2(µ0M
2
s )−1A ,

γ = Msµ0γe
(108)

which have, respectively, the dimensions of (length)2 and
(time)−1.

2. The stray field in a flat wall

To prove (26), we introduce the usual representation
of the stray field in terms of the scalar potential H:

hs = −∇H ; (109)

we note that, due to (25),

div m = m′ · c1 = (m · c1)′ ; (110)

and, finally, we write equation (23)2 as

4H = (m · c1)′, (111)

where, for t fixed, the right side depends at most on x.
But then the representation formula for the solutions of
the Poisson equation implies that H=H(x, t), and hence
the stray field is parallel to c1:

hs=−H ′ c1 , H ′(x, t) = m(x, t) · c1 + c(t) . (112)
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